
Slide 1 - Pairwise Sequence Alignment Part 1 

 
Slide notes 
This presentation and the next one will explain the process of finding similar regions between two sequences, called pairwise 
sequence alignment. 
  



Slide 2 - Overview 

 
Slide notes 
In this presentation, we will discuss why we want to compare sequences.   I will then briefly describe both the dynamic programming 
algorithms, global and local, and the heuristic algorithms.  Included in this will be a brief discussion of scoring matrices and their 
effect on algorithm results.  The second presentation will include a more detailed discussion of scoring matrices and an explanation 
of the statistics of similarity searches. 
  



Slide 3 - Why compare sequences? 

 
Slide notes 
Why do we want to compare two sequences?  First, nature is conservative.  Incremental modifications, not large-scale changes, 
give rise to the genetic diversity and novel function that we see.  The detection of similarities between sequences allows us to infer 
the roles and functions of newly isolated sequences using well-known, characterized sequences.  For example, if we find that a 
sequence we have isolated from Human is very similar to a sequence from Mouse that is known to be involved in digestion, it is 
reasonable to infer that the sequence we found may also be involved in digestion. 
  



Slide 4 - Sequence Alignment 

 
Slide notes 
Before we can make comparative statements about two sequences, we have to produce a pairwise sequence alignment; in other 

words, we need to find the optimal alignment between the two sequences.  So, how do we define “optimal”?  Which algorithm 

should we use?  How should we score matches and mismatches?  Should we allow gaps?  If so, how should we score 

them?  Should we score protein sequences differently than we score DNA sequences?  Another thought: are all alignments 

biologically significant?  What are the chances that two random, non-related sequences can produce a “good” alignment? 

  



Slide 5 - Protein Evolution 

 
Slide notes 
The premise behind most sequencing projects is to determine the sequence first and then infer function.  We can trace the 
evolutionary history of many proteins back more than one billion years.  Over this time frame, an enormous amount of information is 
preserved, making it possible to find similarities in proteins that are separated by hundreds of millions of years.  Unfortunately, it isn’t 
as simple as comparing sequences and assuming that they are related because they can be aligned.  Sequences can be very 
similar and contain good alignments without sharing a common ancestor.  In other words, similar sequences are not necessarily 
homologous. 
  



Slide 6 - Three alignments, three meanings 

 
Slide notes 
For example, on this slide, we show the human alpha globin sequence aligned with three other sequences.  The first alignment is 
obviously quite good; there are clear similarities between human alpha globin and human beta globin.  The alignment between 
leghaemoglobin from yellow lupin and human alpha globin is not as good, but the 3-D structures of the proteins are identical, the 
proteins share the same function and they are known to be evolutionarily related.  The third alignment, between human alpha globin 
and nematode glutathioine S-transferase appears to be of similar quality to the second alignment, but in this case, the alignment is 
spurious.  The two proteins have completely different functions and structures.  So, how do we tell the difference between 
alignments that represent real evolutionary relationships, such as alignment 2, and coincidental similarities, such as alignment 3? 
  



Slide 7 - Pairwise Sequence Alignment Methods 

 
Slide notes 
First, we have to align the sequences.  There are two methods used to align sequences.  The first is dynamic 
programming.  Alignments found using dynamic programming can either be global, using algorithms such as Needleman-Wunsch, 
or local, using algorithms such as Smith-Waterman.  The second method used is word, or k-tuple, methods.  In this case, the 
algorithm compares small sections, with some minimum word length, of each sequence to begin the alignment instead of comparing 
single letters.  BLAST and FASTA both use word, or k-tuple, methods.  Both methods have their advantages and disadvantages. 
  



Slide 8 - Dynamic Programming Algorithm 

 
Slide notes 
Dynamic Programming methods are guaranteed to provide the best alignment between any two sequences.  Matches, mismatches, 
and gaps can be included into the score calculated by the algorithm; this maximizes the number of matched characters. 
  



Slide 9 - Example 

 
Slide notes 
For example, let’s say we wanted to find the best global alignment between these two sequences. 
  



Slide 10 - Define Rules 

 
Slide notes 
First, we have to set up the scoring rules.  In this case, a match has a score of 1, a mismatch has a score of -1, and a gap has a 
score of -3. 
  



Slide 11 - Slide 11 

 
Slide notes 
Next, we set up a table with one sequence across the top and one sequence along the left side; a gap, or empty space, is included 
at the beginning of each sequence.  Then we include in the table the value of aligning the character at the top with the character at 
the left.  Because we are performing a global alignment, gaps at the beginning and end of the alignment also score -3. 
  



Slide 12 - Slide 12 

 
Slide notes 
Now, we need to set up the rules for filling out the table.  When we move horizontally along the table, which represents adding a gap 
to the top sequence, or vertically along the table, which represents adding a gap to the left sequence, we add the gap score, -3, to 
the existing score.  When we move diagonally along the table, we add the existing score to the corner value in the table.  To fill out 
each cell, we move vertically, horizontally, and diagonally into the cell and keep the highest score. 
  



Slide 13 - Slide 13 

 
Slide notes 
This slide shows how we fill out the first row.  Notice that we draw arrows in the table to indicate from which cell we calculated this 
maximum score.  These arrows will be used later to find the optimum alignment. 
  



Slide 14 - Slide 14 

 
Slide notes 
In this slide, we have filled out the second row of the table.  Notice that some of the cells have arrows leading to two previous cells 
instead of one.  In these cases, there was more than one way to get the same highest score, and we mark both ways. 
  



Slide 15 - Slide 15 

 
Slide notes 
Now, we’ve filled out the third row, 
  



Slide 16 - Slide 16 

 
Slide notes 
and so on until the table is complete. 
  



Slide 17 - Slide 17 

 
Slide notes 
Now that we have filled out the table completely, we can use the arrows we drew to trace the optimum alignment.  Since we are 
calculating a global alignment, we must start tracing the arrows from the lower right-hand corner and end in the upper left-hand 
corner.  In this case, there are six alignments that give us the same score.  Two are shown here in blue and green. 
  



Slide 18 - Slide 18 

 
Slide notes 
A third and fourth alignment are shown here.  One is mostly in red; the other includes a single gap, shown in orange, that shift us 
between the red and the blue alignments. 
  



Slide 19 - Slide 19 

 
Slide notes 
The final two are shown here.  Again, they simply shift a gap to a different position in alignments that are already indicated.  The 
shifted gap is marked in yellow for one alignment and in dark blue for the other. 
  



Slide 20 - Slide 20 

 
Slide notes 
These are the 6 optimal global alignments. 
  



Slide 21 - Slide 21 

 
Slide notes 
Sometimes, we are not interested in the best global alignment but in the best local alignment.  Local alignments simply align 
portions of two sequences instead of aligning the entire length of both sequences. 
  



Slide 22 - Smith Waterman 

 
Slide notes 
Smith-Waterman is one of the best known examples of a dynamic programming algorithm that finds local alignments.  Smith-
Waterman does a pairwise comparison between the query and every sequence in a database.  The algorithm is very sensitive and 
is guaranteed to find the highest scoring match.  However, it is much slower than either BLAST or FASTA. 
  



Slide 23 - Slide 23 

 
Slide notes 
We set up a table very similar to the one we set up before.  Because this is a local alignment, mismatches and gaps at the 
beginning and end of the sequences score 0.  In addition, we never let the score for any cell drop below zero.  Using these 
modifications, we can find the best local alignment between the same two sequences we used earlier.  We simply find the highest 
score in the table and trace the path back until we come to a cell with a score of zero; this cell is not included in the alignment.  
  



Slide 24 - Slide 24 

 
Slide notes 
Here is the optimal local alignment. 
  



Slide 25 - Heuristic (word or k-tuple based) algorithms 

 
Slide notes 
The second algorithm type used for finding alignments is the heuristic algorithm.  A heuristic algorithm tries to find a perfect match at 
least as large as a user-entered word size or k-tuple.  Once this perfect match is found, the algorithm tries to extend the alignment in 
both directions until either one of the sequences ends or the score drops below some threshold.  Because only the “most likely” 
alignments are tried, the algorithms run more quickly than Smith-Waterman, but they are less sensitive since they weed out potential 
good alignments if they don’t contain a large enough perfect match. 
  



Slide 26 - FASTA  (Pearson and Lippman 1988) 

 
Slide notes 
One of the first heuristic algorithms developed was FASTA.  FASTA uses a combination of a word search and the Smith-Waterman 
algorithm.  The query sequence is divided into small “words” that are compared with a database.  If the “words” are found,  the 
regions surrounding them are then compared and extended as long as they are identical. 
  



Slide 27 - The ktup value 

 
Slide notes 
The length of the “word” used for the initial comparison is called the k-tup value.  As the k-tup value increases, the algorithm returns 
fewer good, but non-identical, alignments, and it runs faster.  As the k-tup value decreases, it becomes more likely that you will get 
superfluous matches.  Typical values of k-tup are 1 or 2 for proteins and 3 for DNA. 

  



Slide 28 - FASTA Steps 

 
Slide notes 
The first step in the FASTA algorithm is to find all regions in the two sequences that are identical; these show up as a diagonal in the 
analysis table we looked at earlier.  The regions are then scored using a scoring matrix chosen by the user.  Matches, or diagonals, 
with a score below a user-defined cutoff are removed, and the remaining identical regions are aligned using Smith-Waterman. 
  



Slide 29 - Summary of FASTA steps 

 
Slide notes 
In summary,  FASTA first analyses a database for identical matches, or diagonals, that have a length that is greater than or equal to 
a user-defined minimum.  The diagonals are scored using a scoring matrix, and the shortest ones are removed.  The remaining 
diagonals are joined, and an alignment is performed using Smith-Waterman.  A lot of time is saved because Smith-Waterman is only 
run on the top-scoring matches. 
  



Slide 30 - FASTA Versions 

 
Slide notes 
The are 5 available versions of  FASTA.  The fastest, fasta, compares protein sequences to a protein database or DNA sequences 

to a DNA database.  The next two, fastx and fasty, are slower than fasta and compare translated DNA sequences against a protein 

database.  The final two, tfastx and tfasty, are the slowest; they compare a protein sequence to a translated DNA database. 

  



Slide 31 - BLAST (Karlin and Altschul 1990) 

 
Slide notes 
Another heuristic algorithm is BLAST.  In BLAST, the database is indexed based on “word” and the “words” are compared to the 
query sequence.  The BLAST algorithm does not require identity in the initial matches; it just requires that the score of the alignment 
between the “word” and the query be higher than a user-defined value.  Once a “word” is found that meets this criterion, the aligned 
region is extended in both directions.  If the final alignment has a score that is less than some threshold set by the user, the match is 
discarded; otherwise it is kept as a potential match. 
  



Slide 32 - BLAST Versions 

 
Slide notes 
There are also 5 versions of BLAST available.  BLASTN compares a DNA sequence to a DNA database.  BLASTP compares a 

protein sequence to a protein database.  BLASTX compares a DNA sequence to a protein database.  TBLASTN compares a protein 

sequence to a translated DNA database.  TBLASTX, which typically takes the longest of the five to run, compares a 

translated DNA sequence to a translated DNA database. 

  



Slide 33 - Scoring Matrices 

 
Slide notes 
We mentioned the concept of scoring matrices several times in the last few slides.  A scoring matrix represents the odds of 
obtaining a particular match between sequences that are known to be related as opposed to obtaining the match between unrelated 
sequences.  For alignment statistics to be meaningful, the correct scoring matrix must be used. 
  



Slide 34 - Dayhoff PAM Matrix (Point Accepted Mutation) 

 
Slide notes 
The first family of scoring matrices we will look at is the Dayhoff PAM matrix.  The first PAM matrix, PAM 1, was initially calculated 
by looking at the differences between sequences that were 85% similar.  To calculate matrices for other similarity levels, it was 
assumed that each amino acid change was independent of previous changes at the same site.  The matrices list the likelihood that 
one amino acid could change to another in homologous sequences during evolution. 
  



Slide 35 - Blocks Amino Acid Substitution (BLOSUM) Matrix 

 
Slide notes 
The second family of scoring matrices is the BLOSUM matrix.  The BLOSUM matrices were based on the amino acid substitution 
rate in highly conserved blocks.  The BLOSUM matrices are not explicitly based on an evolutionary model, as the PAM matrices are, 
but are based instead on related families of proteins. 
  



Slide 36 - Slide 36 

 
Slide notes 
This is an example of what the scoring matrices look like.  In particular, this is the log-odds form of the PAM 250 matrix, which 
represents about 20% similarity.  In general, similar amino acids have a greater chance of substituting for each other. 
  



Slide 37 - Summary 

 
Slide notes 
In summary, take speed and sensitivity into account when choosing the appropriate algorithm for determining alignments.  To further 
speed up the algorithms, use the smallest database that will answer your question. Last, take some thought when picking which 
scoring matrix to use; the default matrix may not provide you with meaningful results. 
  
  
 


