
Slide 1 - Pairwise Sequence Alignment Part 2 

 
Slide notes 
This presentation continues the discussion of pairwise sequence alignment. 
  



Slide 2 - Overview 

 
Slide notes 
In particular, we are going to have a more in-depth discussion about scoring methods, about the significance of the scores that the 
algorithms produce, and about the statistics behind the calculations of significance and score. 
  



Slide 3 - Statistics of Similarity Searches 

 
Slide notes 
Specifically, we want to think about the following questions.  First, what kind of scoring method should we use to generate the 
maximum scoring alignment?  Second, how significant is this score; that is, how likely is it that the two sequences producing this 
alignment score are related? 
  



Slide 4 - Scoring Methods 

 
Slide notes 
First, some more detailed information about scoring methods. 
  



Slide 5 - Slide 5 

 
Slide notes 
To calculate the final score of a potential alignment, each symbol pairing is assigned a numerical value, based on how frequently 
you would expect to see this pairing in two related species.  To simplify calculating the final score, the values must be additive.  In 
general, the values are arranged in a “scoring matrix.” 
  



Slide 6 - Slide 6 

 
Slide notes 

The simplest scoring matrix for DNA sequences assigns a value of 1 for a match and 0 for a mismatch.  Using this matrix, the 

example alignment shown has a score of 5. 
  



Slide 7 - Slide 7 

 
Slide notes 
Using this scoring matrix makes it more difficult to tell the difference between a very good alignment that is short and a longer 
alignment that is very poor.  So, we can introduce negative scoring values to penalize mismatches.  For this scoring matrix, a match 
gets a score of 5, and a mismatch gets a score of -4.   Using this modified matrix, the example alignment has a score of -51. 
  



Slide 8 - Slide 8 

 
Slide notes 
Protein scoring matrices are larger and more complicated looking since there is a different probability for each amino acid 
pairing.  To find the value associated with any amino acid substitution pair, find the two amino acids on the edges of the table and 
read off the value where the row and column intersect.  For this example scoring matrix, let's look at Threonine, whose single-letter 
code is T, and Glycine, whose single-letter code is G.  The value for a T:T match is 5, and the value for a T:G mismatch is -2. 
  



Slide 9 - Slide 9 

 
Slide notes 
Different amino acid pairings have different values because amino acids have different biochemical and physical properties that 
influence their relative substitution rate in evolution.  In this image, the amino acids are grouped according to the chemistry of their 
side groups.  
  



Slide 10 - Dayhoff PAM Matrix (Point Accepted Mutation) 

 
Slide notes 
There has been a lot of work to develop meaningful score matrices for protein sequence alignment.  The first family of scoring 
matrices we will look at is the Dayhoff PAM matrix.  The matrices list the likelihood that one amino acid could change to another in 
homologous protein sequences during evolution.  It assumes that each amino acid change is independent of any previous changes 
that occurred at that site.  This matrix family was derived from global alignments of protein families that are at least 85% identical. 
  



Slide 11 - PAM Matrix cont’d 

 
Slide notes 
This first matrix, which represents 85% identity, is called PAM 1.  PAM 1 reflects an average change of 1% of all amino acid 
positions.  Since we are generally looking at alignments between sequences that are less than 85% similar, other PAM matrices, 
such as PAM 250, were calculated by multiplying PAM 1 by itself for some number of times;  the number of times is reflected in the 
name of the matrix.  Larger PAM numbers mean that that the matrix represents a larger evolutionary distance.  
  



Slide 12 - Slide 12 

 
Slide notes 
Here is the PAM 250 matrix.  This matrix is symmetric, meaning that the value in the matrix is independent of which amino acid out 

of a pair substituted for the other. 

Let's look at Tryptophan, represented by its single-letter code, W, and Cysteine, represented by its single-letter code, C.  The value 

associated with a W:W pairing, 17, is a very large positive number, while almost all of the other pairings with W, such as W:C, have 

relatively large negative scores.  Therefore, the matrix represents the fact that Tryptophan is a conserved residue. 



Slide 13 - BLOSUM Matrix  (Blocks Amino Acid Substitution) 

 
Slide notes 
The second family of scoring matrices is the BLOSUM matrix.  The BLOSUM matrices were based on the amino acid substitution 
rate in highly conserved blocks.  The BLOSUM matrices are not explicitly based on an evolutionary model, as the PAM matrices are, 
but are based instead on related families of proteins. 
  



Slide 14 - Slide 14 

 
Slide notes 
Specifically, the BLOSUM matrices were derived from alignments of domains in distantly related proteins.  Occurrences of each 
amino acid pair in each column of each block were counted, and the totals were used to compute the BLOSUM matrices. 
  



Slide 15 - Slide 15 

 
Slide notes 
The sequences within blocks were clustered based on their level of identity, and the different BLOSUM matrices differ in the 
percentage of sequence identity used in the clustering.  This percentage is reflected in the matrix name.  Unlike the PAM matrices, 
larger numbers mean a smaller evolutionary distance. 
  



Slide 16 - Slide 16 

 
Slide notes 
So, which matrix do we choose for our alignment?  Generally, BLOSUM matrices perform better than PAM matrices for local 
similarity searches.  It is very important that you remember that large PAM numbers or small BLOSUM numbers should be used for 
distantly related proteins, while small PAM numbers or large BLOSUM numbers should be used for closely related proteins.  The 
most commonly used matrix for calculating local alignments is BLOSUM 62. 
  



Slide 17 - Gapped Alignment 

 
Slide notes 
Gaps are scored independently of the scoring matrix used.  There are two methods of scoring gaps.  The first simply multiplies the 
length of the gap by a penalty per length.  The second method uses a gap opening penalty added to a gap extension penalty that is 
multiplied by the amount the gap is extended (that is, the length of the gap minus 1). 
  



Slide 18 - Significance of Scores 

 
Slide notes 
Now that we know how scores are calculated, let’s take a brief look at their significance. 
  



Slide 19 - Significance of Scores, con't 

 
Slide notes 
It is always possible to find an optimal alignment, or Maximum Segment Pair (MSP), between any two protein sequences, 
regardless of whether they are related.  However, not all MSPs are significant.  To determine if the MSP is significant, we need to 
find out how many MSPs with at least that same score we can expect by chance. 
  



Slide 20 - Two Assumptions 

 
Slide notes 
To calculate this, we will make two assumptions.  First, at least one of the target frequencies is positive.  Second, the expected 
score for aligning a pair of random sequences is negative. 
  



Slide 21 - Statistical Significance:  Expectation Value 

 
Slide notes 
With these assumptions, we can use the extreme value distribution (EVD) to calculate the number of alignments between random 
sequences that we expect to see with a given score or better.  We define this quantity to be the e-value.  In general, as the score 
increases, the e-value decreases, indicating that this alignment is more likely to be biologically significant. 
  



Slide 22 - Statistical Significance: P-Value (probability) 

 
Slide notes 
We can also calculate the probability of finding at least one alignment with a score greater than or equal to some given score.  We 
define this quantity to be the p-value, and it can be also used to help determine if the alignment that has been returned is biologically 
significant.  Like the e-value, as the p-value decreases, it is more likely that the alignment is biologically significant. 
  



Slide 23 - Score, E-value and P-value compared 

 
Slide notes 
This table gives a brief comparison of score, e-value, and p-value.  Holding all other variables constant, as the score increases, both 
the p-value and the e-value decrease. 
  



Slide 24 - Statistical Significance 

 
Slide notes 
You may be asking why not use raw score instead of e-value or p-value since the three are related and the raw score doesn’t need 

any additional calculations.  Well, you can only directly compare the raw scores of alignments if the alignments were created using 

the same scoring method and against the same search space, which is the product of the database and query 

sequence.  Therefore, the raw score is not useful in general.  E-values and P-values take the search space and scoring method into 

account, which means that they can be directly compared to find the best alignment. 



Slide 25 - Normalized (bit) score 

 
Slide notes 
Another useful value used to measure the strength of a pairwise alignment is the bit score, S', derived in this slide. 



Slide 26 - Statistical Formulation 

 
Slide notes 
And now, a few words about the statistics behind these models. 
  



Slide 27 - Statistical Formulation 

 
Slide notes 
In order for the scores to be useful, we need to make sure that the scoring methods we use are statistically valid. 
  



Slide 28 - Probability/Statistics 101 

 
Slide notes 
Let’s go over a few terms used frequently in statistics.  A model is a system that simulates the object under consideration.  A 
probabilistic model is a model that produces different outcomes based on a set of probabilities.  In our case, the objects we are 
simulating are sequences, and the model is a family of related sequences. 
  



Slide 29 - Example 

 
Slide notes 
Let’s look at a more general example-that of a six-sided die.  There are 6 outcomes for each roll of a die, each with their own 
probability.  For a “normal” die, the probability of any given number appearing after a roll is the same: 1/6.  If the die is “loaded,” the 
probabilities of the six outcomes is not the same.  Regardless of whether the die is “normal” or “loaded,” the probability of any 
outcome must be greater than or equal to zero and the sums of the probabilities of all of the outcomes must equal 1.  If the events 
we are modeling are independent of each other, such as rolls of a die, then we can calculate the probability of a sequence of events 
by multiplying together the probabilities of the events occurring separately. 
  



Slide 30 - Biological Example 

 
Slide notes 
Now, let’s look at a biological example of an independent system: a DNA or protein sequence.  A sequence is built from an 

“alphabet” of residues.  A DNA sequence’s alphabet contains 4 letters, while a protein sequence’s alphabet contains 20.  To create 

a random sequence, we can assume that each residue occurs with a certain probability, regardless of the other residues in the 

sequence.  This allows us to calculate the probability of a particular sequence by multiplying together the probabilities of all of the 

residues in the sequence.  This is called the “Random Sequence Model.” 

  



Slide 31 - Conditional and Joint Probabilities 

 
Slide notes 
Let’s go back to our previous example involving a die, except now, we are going to look at a system that contains two dice.  Each of 
these dice could have a different probability of rolling a given number, so we must specify both the die and the outcome of the roll in 
order to find the probability; this is called the conditional probability.  (For example, what is the probability of rolling a 2 given the 
condition that you are rolling the red die?)  If the condition isn’t guaranteed, then the probability depends on meeting that condition 
and then getting the outcome; this is called a joint probability.  (For example, what is the probability of rolling a 2 on a red die if you 
pick from a bag that contains both red and blue dice?)  To calculate a joint probability, you multiply the probability of meeting the 
condition with the probability of getting the outcome once the condition is met. 
  



Slide 32 - “Occasionally dishonest” casino 

 
Slide notes 
Let’s look at another concrete example.  Let’s say, for instance,. That you are in an “occasionally dishonest” casino where 99% of 
the dice are fair and 1% are “loaded” so that the probability of rolling a 6 is 50%.    So, we know that the probability of rolling a 6 on a 
“loaded” die is 50%, and the probability of rolling a 6 on a “normal” die is approximately 17%.  To find the general probability of 
rolling a 6, we must take into account both the normal dice and the loaded dice.  To do this, we multiply the probability of getting a 
“loaded” die by the probability of rolling a 6 with a “loaded” die (50%).  We do the same for the "normal” die, and then sum the two 
probabilities together. 
  



Slide 33 - Substitution Matrices 

 
Slide notes 
Let’s look a little at how this relates to substitution matrices.  The general issue: given a pair of sequences, we want to assign a 
score to an alignment that gives us some idea of the relative likelihood that the two sequences are related versus unrelated.  To do 
that, we need to develop models for the related and unrelated cases that calculate the probability of each case and then take a ratio 
of the two probabilities. 
  



Slide 34 - Unrelated (Random) Model R 

 
Slide notes 
First, let’s look at the model for unrelated sequences.  In this model, we assume that each residue occurs independently of any 
other in the sequence with some given probability.  The probability that the two sequences exist independently of each other is just 
the product of probabilities of each residue in each sequence. 
  



Slide 35 - Match Model M 

 
Slide notes 
Now let’s look at the model for related sequences.  In this case, each aligned pair of residues occurs with some joint 
probability.  This joint probability represents the idea that the two residues are derived from some unknown common ancestor.  The 
probability that these aligned pairs exist is given by the product of all of the joint probabilities. 
  



Slide 36 - Odds Ratio 

 
Slide notes 
To get these probabilities into a form that can be combined by adding, we need to find the log-odds ratio score.  First, we find the 
odds ratio by dividing the probability that the two sequences are related by the probability that the two sequences exist 
independently of each other.  We then take the log of that to find the log-odd ratio score.  Since each aligned pair is independent of 
the other aligned pairs in the sequences, we can also calculate a log-odds ratio for the aligned pairs independently.  It is this value 
that appears in scoring matrices. 
  



Slide 37 - Substitution Matrices - Revisited 

 
Slide notes 
To reiterate, scores are only statistically meaningful when the appropriate scoring matrix is used. 
  



Slide 38 - Low-complexity Regions 

 
Slide notes 
The last thing we'll discuss in this lecture is the effect of low-complexity regions on alignments and scoring.  Some sequences 
contain regions that are highly repetitive and low-complexity.  This can occur because of a variety of reasons.  These repetitive 
regions increase the chance of a high-scoring, but meaningless, alignment during database searches.  Therefore, it is better to 
mask these regions before beginning a pairwise search. 
  



Slide 39 - Summary 

 
Slide notes 
In summary, you must take speed and sensitivity into account when choosing the appropriate algorithm for determining 
alignments.  To further speed up the algorithms, use the smallest database that will answer your question. Take some thought when 
picking which scoring matrix to use; the default matrix may not provide you with meaningful results.  The score of any alignment 
increases with the size of the search, which is why it is advisable to use p-values and e-values for comparison purposes.  Finally, 
filter out or mask low-complexity regions in sequences to prevent spurious, but high scoring, alignments from appearing in your 
results. 
  
  
 


