
Slide 1 - Models and Motifs 

 
Slide notes 
This presentation is designed to give you an introduction to  models and motifs. 
  



Slide 2 - Beyond Pair-wise Sequence Comparison 

 
Slide notes 
As geneticists, we often work with sequence fragments that we want to identify and classify.  Consensus models, built from 
alignments of multiple sequences, can exploit additional information, such as position-specific information and identity of conserved 
residues, to help us accomplish that. 
  



Slide 3 - Terminology 

 
Slide notes 
Let's start the discussion with a few definitions.  A domain is an independently folded structural unit.  A block is an ungapped 
multiple alignment of a conserved region of protein sequences.  A conserved pattern or motif is a highly similar region in an 
alignment of protein sequences.  A Position-Specific Scoring Matrix (PSSM), also called a profile or a model, can be calculated from 
each block.  The blocks, profiles, motifs, and patterns can be represented as special cases of the Hidden Markov Model (HMM) 
approach. 
  



Slide 4 - Conserved Regions in Protein Sequences – Local vs. Global 

 
Slide notes 

Just as pairwise sequence alignments can be either global or local, multiple sequence alignments, or MSAs, can also be global or 

local.  Patterns, which are short conserved regions containing no gaps, and motifs, which are conserved regions that typically 

represent structural or functional elements, are typically found by performing a local multiple sequence alignment.  On the other 

hand, a profile analysis is performed by determining a global MSA and then removing the more highly conserved regions in the 

alignment into a separate, smaller MSA that can be used to search for other, related sequences.  Similarly, the HMM approach 

begins with a global alignment and calculates probabilities for each position in the alignment that describe how likely that position is 

to be conserved in related sequences.  

  



Slide 5 - Patterns 

 
Slide notes 
Short, highly conserved regions are called patterns.  Patterns contain no insertions or deletions and can typically be represented 
with a regular expression. 
  



Slide 6 - Patterns / Regular Expression (cont’d) 

 
Slide notes 
For example, here is an alignment of five short sequences that we want to characterize using a regular expression.  The first step is 
to look in each column of the alignment and write down what we see.  For example, the third column contains only A’s while the 
fourth column contains all of the residues.  Then we begin to consolidate the regular expression into a more compact form.  Now, 
let’s compare some new sequences to see if they fit into this pattern.  This first sequence matches.  The second does not, since it 
does not have a C or a G as its second residue.  The third sequence also matches the pattern.  So, the regular expression is useful 
for finding sequences that fit the pattern. 
  



Slide 7 - Patterns / Regular Expression (cont’d) 

 
Slide notes 
So, what happens if the regions we are aligning have different lengths; that is, the aligned region contains gaps and/or 
insertions.  Unfortunately, regular expressions cannot deal with regions that contain gaps or insertions.  Neither can it tell you how 
well the new sequence fits the search criteria.  
  



Slide 8 - Position-Specific Scoring Matrix  (Profiles, Motifs, Models) 

 
Slide notes 
For this, we need a position-specific scoring matrix..  A position-specific scoring table or matrix contains comparison information 
about the aligned sequences.  The columns in the table represent positions in the sequence, and the rows in the table contain the 
score for the alignment of the position with each residue.  The table is then used to find sequences similar to the alignment. 
  



Slide 9 - Example of a PSSM 

 
Slide notes 
Here is an example of an alignment with its position-specific scoring matrix.  Note that the values in the table are higher for 
conserved residues. 
  



Slide 10 - Markov Model 

 
Slide notes 
The Markov model is a probabilistic generative model for a time series that is defined by a finite set of states.  
  



Slide 11 - Markov Model example 

 
Slide notes 
Let's take an everyday example -- the flip of a coin.  There are two possible states:  Heads, denoted with an H, and Tails, denoted 
with a T.  We have a probability of 0.5 of getting either heads or tails on any flip.  A typical sequence this model could generate is 
presented at the bottom. 



Slide 12 - Hidden Markov Model discussion 

 
Slide notes 
A Hidden Markov Model is slightly more complicated.  It contains a "transition probability", that represents the probability of moving 
from one state to another, and an "emission probability", that represents the probability of generating specific symbols while in a 
particular state.  So we have a discrete alphabet of symbols, a probability transition matrix, and a probability emission matrix.  Unlike 
the Markov Model example we discussed earlier, a Hidden Markov Model does not have to emit a symbol when it moves from state 
to state, allowing us to incorporate gaps, and each “state” can emit a variety of symbols. 
  



Slide 13 - Hidden Markov Model 

 
Slide notes 
Let’s look at the same diagram that we used earlier to examine the Markov Model.  Now, in addition to the transition probabilities, 
there is an emission probability matrix for the Heads and the Tails states.  Now, when we look at a typical sequence from this model, 
it is impossible to tell which state the model was in when each symbol was emitted; the states themselves are hidden. 
  



Slide 14 - HMMs in Bioinformatics 

 
Slide notes 
Hidden Markov Models, or HMMs, can be used to model a family of sequences.  Gaps, insertions, and deletions are allowed.  There 
are two possible “alphabets” for the model: nucleotide and amino acid.  For a given alignment, the model will produce probabilities 
for each position.  Then, we can use the model’s probabilities to compute the probability of a sequence belonging the family 
represented by the model. 
  



Slide 15 - Schematic Representation of a Hidden Markov Model 

 
Slide notes 
This diagram shows a schematic diagram of an HMM, including deletions, insertions, and up to four matches. 
  



Slide 16 - Deriving the HMM Heuristics 

 
Slide notes 
To derive an HMM, we first must start with a multiple sequence alignment.  Each column in the alignment generates a state in the 
model.  Transition probabilities are determined using deletions and insertions.  Emission probabilities at each state are determined 
by counting the occurrence of each character in each column. 
  



Slide 17 - Slide 17 

 
Slide notes 

Let’s try an example.  Here is our alignment.    Let’s begin drawing the model.  First, let’s draw the start state, the four possible 

match states, and then the end state.  Next, we’ll follow with the insertion states, each one of which can occur multiple times before 

moving to a match state.  Next come the deletion states and all of the state transitions that can occur.  Next, we’ll use the MSA to 

add transition probabilities, and finally, we’ll add the emission probabilities for each state. 

  



Slide 18 - Slide 18 

 
Slide notes 
These emission probabilities can be stored in a table, 
  



Slide 19 - Slide 19 

 
Slide notes 
as can the transition probabilities.  In this table, “m” stands for match, “i” stands for insertion, “d” stands for deletion, “s” stands for 
start, and “e” stands for end. 
  



Slide 20 - Deriving the HMM Constructing/Training the HMM 

 
Slide notes 
Since we can’t see the states themselves but only what they emit, we must create the HMM using our best guess as to what the 
states are.  There are multiple algorithms that can be used to construct and train an HMM.  The first we’ll discuss is the EM, or 

Baum-Welsch, algorithm.  This algorithm uses a random MSA, such as the one constructed by ClustalW.  The number of match 

states is defined as the number of conserved columns.  This algorithm uses a two stage, iterative process; first, it uses the aligned 
residues to build a model, and then it realigns the sequences to the model.  These two steps are repeated until the model no longer 
changes.  A second algorithm called the Viterbi algorithm uses dynamic programming to calculate the best estimate of the emission 
probabilities.  A third, called the “Surgery” algorithm, uses dynamic adjustments of the HMM length to calculate the best models.  
  



Slide 21 - Using the HMM Scoring (aligning) a sequence against a model 

 
Slide notes 
After we create the HMM, we can use it to search for sequences that are similar to the ones used to create the HMM.  So, we use 
the model to estimate the probability that a sequence belongs to the model.  This probability is often expressed as negative log 
likelihood score and is dependent on the length of the sequence and the length of the model.  Once we have a score, we need a 
way to assess its significance, just as we did for pairwise sequence alignments. 
  



Slide 22 - Similarity Searches with HMM 

 
Slide notes 
There are two similarity searches that use HMMs.  The first, HMMSearch, uses the HMM as the query and searches an amino acid 
database for sequences that match the model.  The second, HMMScan, uses an amino acid as the query and compares it to an 
HMM. 
  



Slide 23 - Using HMMs in VIBE 

 
Slide notes 
Both of these similarity searches are available in VIBE. 
  



Slide 24 - Local vs. global HMM scoring 

 
Slide notes 
We can use HMMs for a variety of purposes.  We can insist on a global alignment between the sequence and the model.  We can 
allow gaps only  at the beginning and end of the HMM so that we can find regions within longer sequences.  We can allow local 
alignments in addition to global alignments.  We can also choose to model different lengths of sequences-from domains to whole 
proteins. 
  



Slide 25 - Applications of HMMs 

 
Slide notes 
Amino acid HMMs are used to identify multiple sequence alignments and distant homologs, define domains, and recognize folds in 
protein structure prediction.  Nucleotide HMMS are used to model exons and genes; the models are used when trying to recognize 
genes. 
  



Slide 26 - Advantages of HMMs 

 
Slide notes 
HMMs have some distinct advantages.  They are built on a formal probabilistic basis.  They also allow for more sensitive searching 
than pairwise alignments do.  The probabilistic theory can be used to guide the scoring parameters; the theory also allows us to train 
an HMM using unaligned sequences if we don’t know or trust the alignment.  There is a consistent theory behind gap and insertion 
penalties.  Finally, less skill and human intervention is needed to train a good HMM than to train a hand-constructed 
profile.  Because of this, we can create libraries of hundreds of profile HMMs and apply them on a large scale. 
  



Slide 27 - Drawbacks of HMMs 

 
Slide notes 
Its one major drawback is that its probabilistic basis does not capture higher-order correlations between sequence positions.  It 
assumes that the identity of a particular position is independent of the identity of all of the other positions in the sequence, and we 
know that not to be true. 
  
  
 


